Structured Computation and Representation in Deep Reinforcement Learning

Jessica B. Hamrick

ICLR Workshop on Deep Reinforcement Learning Meets Structured Prediction

> New Orleans, LA, USA May 6, 2019

The arrangement of and *relations* between the *parts* or elements of something complex.

(Oxford English Dictionary)

The arrangement of and *relations* between the *parts* or elements of something complex.

(Oxford English Dictionary)

In humans: Evolution → Structure

The arrangement of and *relations* between the *parts* or elements of something complex.

(Oxford English Dictionary)

In humans: Evolution → Structure

In ML: Structure → Inductive bias / prior / regularizer

Two Types of Structure

Two Types of Structure

1. Structured Computation: the way that individual computations or functions are composed into more complex structures.

Two Types of Structure

1. Structured Computation: the way that individual computations or functions are composed into more complex structures.

2. Structured Representation: the format of the data that computations are performed over, e.g. sets, graphs, programs, etc.

Structured computation and structured representation go hand in hand!

Structured computation and structured representation go hand in hand!

Often, a structured representation entails a particular structure in the computation, and vice versa.

Structured computation and structured representation go hand in hand!

Often, a structured representation entails a particular structure in the computation, and vice versa.

But it can still be useful to think separately about:

- (1) how computations are arranged and composed, and
 - (2) the specific form of the representations.

Structured computation and structured representation go hand in hand!

Often, a structured representation entails a particular structure in the computation, and vice versa.

But it can still be useful to think separately about:

- (1) how computations are arranged and composed, and
 - (2) the specific form of the representations.

Structured computation and structured representation go hand in hand!

Often, a structured representation entails a particular structure in the computation, and vice versa.

But it can still be useful to think separately about:

- (1) how computations are arranged and composed, and
 - (2) the specific form of the representations.

Fully-Connected Layer

Unstructured computation
Unstructured representation

Fully-Connected Layer
Unstructured computation
Unstructured representation

Convolutional Layer
Structured computation
Unstructured representation

Fully-Connected Layer
Unstructured computation
Unstructured representation

Convolutional Layer
Structured computation
Unstructured representation

Recurrent Layer

Structured computation

Unstructured representation

GoogLeNet with Inception modules, Szegedy et al. (2015)

Structure in Model-Based Deep RL

Structure in Model-Based Deep RL

Structure in Model-Based Deep RL

- AlphaGo (Silver et al., 2016)
- Imagination-Augmented Agents (Weber et al., 2017)
- Gradient Based Planning (Henaff et al., 2017)
- Value Prediction Networks (Oh et al., 2017)
- Universal Planning Networks (Srinivas et al., 2018)
- ... and more! See Hamrick (2019, Current Opinion in Behavioral Sciences) for a review.

Outline

1. **Structured Computation**: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Outline

1. **Structured Computation**: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Reactive Controller

Reactive Controller

Controller (MLP):

Proposes a control that is sent to the world to minimize performance loss

Reactive Controller

Controller (MLP):

Proposes a control that is sent to the world to minimize performance loss

World: The true environment that the agent is acting in

Reactive controller: simple task

Reactive controller: simple task

Reactive controller: hard task

Reactive controller: hard task

Expert:

Model of the world that evaluates proposed controls

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Expert:

Model of the world that evaluates proposed controls

Memory (LSTM):

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Experts:

Metacontroller: simple task

Metacontroller: simple task

Imagination-Based Planner

Pascanu, Li, et al. (2017)

Imagination-Based Planner

Pascanu, Li, et al. (2017)

Outline

1. **Structured Computation**: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Outline

1. Structured Computation: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Outline

1. Structured Computation: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Led by Victor Bapst and Alvaro Sanchez-Gonzalez

Structure in Deep Networks

Fully-Connected Layer
Unstructured computation
Unstructured representation

Convolutional Layer
Structured computation
Unstructured representation

Recurrent Layer

Structured computation

Unstructured representation

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output

2. Invariant to the permutation of the nodes and edges

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output

2. Invariant to the permutation of the nodes and edges

3. Scale to different numbers of nodes and edges

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges	Nodes	Globals
E	V	\mathbf{u}

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges	Nodes	Globals
E	V	\mathbf{u}

Edge update

$$\mathbf{e}'_{i\to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i\to j}, \mathbf{u})$$

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges	Nodes	Globals
\boldsymbol{E}	V	\mathbf{u}

Edge update

$$\mathbf{e}'_{i \to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i \to j}, \mathbf{u})$$

Node update

$$\mathbf{e}'_{i\to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i\to j}, \mathbf{u})$$
 $\mathbf{v}'_i = \phi_v(\mathbf{v}_i, \sum_j \mathbf{e}'_{j\to i}, \mathbf{u})$

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017) Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges	Nodes	Globals
\boldsymbol{E}	V	\mathbf{u}

Edge update

$$\mathbf{e}'_{i\to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i\to j}, \mathbf{u})$$

Node update

$$\mathbf{v}_i' = \phi_v(\mathbf{v}_i, \sum_j \mathbf{e}_{j \to i}', \mathbf{u})$$

Globals update

$$\mathbf{u}' = \phi_u(\sum_i \mathbf{v}'_i, \sum_{i,j} \mathbf{e}'_{i \to j}, \mathbf{u})$$

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (arXiv 2018)

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Pick up **blocks** and place them in the scene (and optionally make them **sticky**)

Absolute and Relative Actions

"Place block D at (x, y)"

Absolute and Relative Actions

Graph Network Agent

Overall Results

Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 4.83)

Object-Centric Actions (Average reward: 6.99)

Reward: +1 per target, -0.5 per sticky block

Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 4.83)

Object-Centric Actions (Average reward: 6.99)

Reward: +1 per target, -0.5 per sticky block

Connecting

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 1.09)

Object-Centric Actions (Average reward: 2.45)

Reward: +1 per target, free sticky blocks

Connecting

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 1.09)

Object-Centric Actions (Average reward: 2.45)

Reward: +1 per target, free sticky blocks

Covering

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 3.90)

Object-Centric Actions (Average reward: 6.43)

Reward: proportional to length covered, -2 per sticky block

Covering

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 3.90)

Object-Centric Actions (Average reward: 6.43)

Reward: proportional to length covered, -2 per sticky block

Covering Hard

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 4.22)

Object-Centric Actions (Average reward: 4.51)

Reward: proportional to length covered, -0.5 per sticky block

Covering Hard

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Absolute Actions (Average reward: 4.22)

Object-Centric Actions (Average reward: 4.51)

Reward: proportional to length covered, -0.5 per sticky block

Graph Network Agent

Graph Network Agent

Results: Planning

Results: Planning

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Object-Centric Actions (Average reward: 2.45)

Object-Centric Actions +MCTS (Average reward: 2.84)

Reward: +1 per target, free sticky blocks

Results: Planning

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Object-Centric Actions (Average reward: 2.45)

Object-Centric Actions +MCTS (Average reward: 2.84)

Reward: +1 per target, free sticky blocks

Results: Generalization

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Results: Generalization

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Results: Generalization

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (ICML, 2019)

Outline

1. **Structured Computation**: the way that individual computations or functions are composed into more complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

2. Structured Representation: the format of the data that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv) Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, & Hamrick (2019, ICML)

Flexibility, adaptivity and generalization are about having the right structure.

Flexibility, adaptivity and generalization are about having the right structure.

Flexibility, adaptivity and generalization are about having the right structure.

Thanks!

Andy Ballard

Victor Bapst

Peter Battaglia

Hanjun Dai

Carl Doersch

Nicolas Heess

Thomas Kipf

Pushmeet Kohli

Yujia Li

Razvan Pascanu

Tobias Pfaff

David Reichert

Alvaro Sanchez-Gonzalez

Kim Stachenfeld

Oriol Vinyals

Theo Weber

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (*ICLR* 2017)

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kolhli, Battaglia, & Hamrick (*ICML* 2019)

*equal contribution

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (arXiv 2018)

Extra Slides

This is using a learned expert, which is trained simultaneously with the agent

Effect of difficulty (IN expert)

Effect of difficulty (IN expert)

Multiple experts (MLP + IN)

Multiple experts (MLP + IN)

Total number of simulations

—Increasing cost of Int. Net.	10.0	10.0	6.7	10.0	5.6	4.7	5.8
	10.0	10.0	10.0	10.0	4.4	6.2	4.7
	5.7	10.0	10.0	6.1	5.6	4.6	6.3
	4.1	4.1	4.9	3.1	3.2	3.3	2.9
	2.1	2.0	2.2	1.7	1.3	1.5	1.4
	2.5	2.3	1.2	1.1	1.1	1.2	1.2
	1.2	1.7	1.3	1.3	0.7	1.1	1.1

Increasing cost of MLP ———

Multiple experts (MLP + IN)

Increasing cost of MLP ———

Fraction of sims using MLP expert

Increasing cost of MLP ———

Training the Controller and Memory

Training the Manager

Training the Experts

Training the Critic

