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Structure

The arrangement of and relations between the parts
or elements of something complex.

(Oxford English Dictionary)
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Structure

The arrangement of and relations between the parts
or elements of something complex.

(Oxford English Dictionary)

IN humans: Evolution = Structure

In ML: Structure — Inductive bias / prior / regularizer
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Two Types of Structure
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1. Structured Computation: the way that . ~ -
individual computations or functions are e
composed into more complex structures. N —

2. Structured Representation: the format of \/
the data that computations are performed VRN
over, e.g. sets, graphs, programs, etc. /
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Often, a structured representation entails
a particular structure in the computation, and vice versa.

But it can still be useful to think separately about:
(1) how computations are arranged and composed, and
(2) the specific form of the representations.
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Structure in Deep Networks

Fully-Connected Layer
Unstructured computation
Unstructured representation
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Structure in Deep Networks
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GooglLeNet with Inception modules, Szegedy et al. (2015)
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Structure iIn Model-Free Deep RL

Action-Value Network

State or Action
Policy Network
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Structure iIn Model-Based Deep RL

Search /
S’[a’[e e smmmmmaame Planning /
Optimization

Action
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Structure iIn Model-Based Deep RL

AlphaGo (Silver et al., 20106)

Imagination-Augmented Agents (Weber et al., 2017)

Gradient Based Planning (Henaff et al., 2017)

Value Prediction Networks (Oh et al., 2017)

Universal Planning Networks (Srinivas et al., 2018)

... and more! See Hamrick (2019, Current Opinion in Behavioral Sciences) for a review.

Structured
computation!
Search / |
State EEmmmmm—  Planning / Action

Optimization
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Outline

________________________

1. Structured Computation: the way that individual
computations or functions are composed into more
complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battagla (2017, ICLR)

2. Structured Representation: the format of the data
that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv)
Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battagla, & Hamrick (2019, ICML)
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Reactive Controller

Scene (1)

Outcome ()
Performance loss ( L p)
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Reactive Controller

Controller (MLP):

Proposes a control that is
sent to the world to
minimize performance loss
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Reactive Controller

Controller (MLP):

Proposes a control that is
sent to the world to
minimize performance loss

Scene (1)

World: The true
environment that the

| s Outcome (')
agent is acting in Performance loss ( Lp)
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Reactive controller: simple task
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Reactive controller: hard task
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lterative controller

6 DeepMind 21 Jessica Hamrick (@jhamrick)



\Vietacontroller

O

DeepMind

/

World (/)

l

Outcome (')

Scene (1) History ( /1)

[ ——— \

Controller

Action Control

(Kn)

Performance loss ( Lp)
Resource loss (Lr)

22

Scene ()
History ( h,,—1)

Jessica Hamrick (@jhamrick)



Scene () History (h,,—1)

[ ——— \

Controller
C

\Vietacontroller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( f)

l

Outcome (")
Performance loss ( Lp)
Resource loss ( Lr)

Control

(cn)

Action

(Fn)

Scene ()
History ( h,,—1)

G DeepMind 29 Jessica Hamrick (@jhamrick)




O

Scene () History ( /.- 1)

[ ——— \

Controller
C

\Vietacontroller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World (/)

l

Outcome (')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control

(¢n)

Action

(kn)

Scene ()
History ( h,,—1)

DeepMind 22 Jessica Hamrick (@jhamrick)




Scene (1) History ( h,,—1)

Controller

71,C'

\Vietacontroller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( /)

l

Outcome (')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control

(cn)

Action

(kn)

Scene ()
History ( h,,—1)

G DeepMind 29 Jessica Hamrick (@jhamrick)



Scene (1) History ( h,,—1)

Controller

7I'C

\Vietacontroller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( f)

l

Outcome (')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control

(cn)

Scene ()
History ( h,,—1)

6 DeepMind 22 Jessica Hamrick (@jhamrick)



Scene ( ) Hlstory (hp-1)

\Vietacontroller

Controller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( f)

l

Outcome (z')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control
(Cn)

Scene ()
History ( h,,—1)

6 DeepMind 22 Jessica Hamrick (@jhamrick)




Scene ( ) Hlstory (hp-1)

\Vietacontroller

Controller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss

Control
(Cn)

World ( f)

l

Outcome (z')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Scene ()
History ( h,,—1)

6 DeepMind 22 Jessica Hamrick (@jhamrick)




Scene ( ) Hlstory (hp-1)

\Vietacontroller

Controller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( f)

l

Outcome (z')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control
(Cn)

Scene ()
History ( h,,—1)

6 DeepMind 22 Jessica Hamrick (@jhamrick)




Scene ( ) Hlstory (hp-1)

\Vietacontroller

Controller

Manager (MLP): Meta-level
policy that determines
whether to send the
proposed control to the
world, or to an expert, in
order to minimize
performance loss +
resource loss /

World ( f)

l

Outcome (z')
Experts: Performance loss ( Lp)

Different models of the Resource loss ( Lk )
world, each with different
resource costs

Control
(Cn)

Scene ()
History ( h,,—1)

History (4., )

6 DeepMind 22 Jessica Hamrick (@jhamrick)




Metacontroller: simple task
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Metacontroller: simple task
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Metacontroller; hard task
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Imagination-Based Planner

Pascanu, Li, et al. (2017)
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Outline

________________________

1. Structured Computation: the way that individual
computations or functions are composed into more
complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battaglia (2017, ICLR)

________________________
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Outline

2. Structured Representation: the format of the data
that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv)
Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battagla, & Hamrick (2019, ICML)
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Outline

2. Structured Representation: the format of the data
that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv)
Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battagla, & Hamrick (2019, ICML)

Led by Victor Bapst and
Alvaro Sanchez-Gonzalez
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Structure in Deep Networks
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output

2. Invariant to the permutation of the nodes and edges
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Take graphs as input, return graphs as output
2. Invariant to the permutation of the nodes and edges

3. Scale to different numbers of nodes and edges
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges Nodes Globals

E V u
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges Nodes Globals

E V u

Edge update
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges Nodes Globals
E V u
Edge update Node update
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Graph Networks

Gori et al. (2005), Scarselli et al. (2005), Scarselli et al. (2009), Li et al. (2015), Gilmer et al. (2017)
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

Edges Nodes Globals
E V u
Edge update Node update Globals update
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Graph Networks

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (arXiv 2018)

Edge block Node block Global block
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Construction Tasks

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

Avoid touching obstacles

Pick up blocks and place them in the scene
(and optionally make them sticky)

‘Q DeepMind 31 Jessica Hamrick (@jhamrick)



Initial

Final

(a) Silhouette

\III---_
-

J
\
I

e |
- B

\III---_/

+1 per target
-0.5 per sticky block

fb DeepMind

Construction Tasks

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/ICML, 2019)
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Construction Tasks

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/ICML, 2019)

(a) Silhouette (b) Connecting
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(a) Silhouette

Construction Tasks

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

(b) Connecting

+1 per target
-0.5 per sticky block

QQ DeepMind
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(a) Silhouette

Construction Tasks

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

(b) Connecting

+1 per target
-0.5 per sticky block
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Absolute and Relative Actions

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

Image Objects
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Absolute and Relative Actions

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Graph Network Agent

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Overall Results

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/ICML, 2019)
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Silhouette

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Connecting

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Covering

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Covering

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Covering Hard

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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(Average reward: 4.22) (Average reward: 4.51)
e ] 7 e ] 7
[ (]
T .
HE N I I N HE N I N N

Reward: proportional to length covered, -0.5 per sticky block
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Covering Hard

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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(Average reward: 4.22) (Average reward: 4.51)
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Graph Network Agent
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Graph Network Agent

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Results: Planning

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/ICML, 2019)
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Results: Planning

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

Object-Centric Actions Object-Centric Actions +MCTS
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Results: Planning

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Results: Generalization

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Results: Generalization

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)
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Results: Generalization

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (/(CML, 2019)

Object-Centric Actions +MCTS
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Outline

________________________

1. Structured Computation: the way that individual
computations or functions are composed into more
complex structures.

Hamrick, Ballard, Pascanu, Vinyals, Heess, & Battagla (2017, ICLR)

2. Structured Representation: the format of the data
that computations are performed over.

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018, arXiv)
Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battagla, & Hamrick (2019, ICML)
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~lexipility, adaptivity ano
generalization are about
having the rignht structure.
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Hamrick, Ballard,
Pascanu, Vinyals, Heess,
& Battaglia (/ICLR 2017)

Bapst*, Sanchez-Gonzalez*,
Doersch, Stachenfeld, Kolhli,
Battaglia, & Hamrick (/(CML 2019)

“equal contribution

Battaglia, Hamrick, Bapst,
Sanchez-Gonzalez,
Zambaldi, et al. (arXiv 2018)
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Reactive Controller Results
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'terative Controller Results
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\Vietacontroller Results
Effect of difficulty (IN expert)
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\Vietacontroller Results
Effect of difficulty (IN expert)
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Vietacontroller Results
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\Vietacontroller Results
Multiple experts (MLP + IN)
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\Vietacontroller Results
Multiple experts (MLP + IN)
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\Vietacontroller Results
Multiple experts (MLP + IN)
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Training the Controller and Memory
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Training the Manager
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Training the experts

Scene History (n-1)
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Training the Ciritic
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