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The promise of model-based RL
“Model-based planning is an essential ingredient 
of human intelligence, enabling flexible 
adaptation to new tasks and goals”

	 -Lake et al. (2016)

“...a flexible and general strategy such as mental 
simulation allows us to reason about a wide range 
of scenarios, even novel ones...”

 
	 -Hamrick (2017)

“Model-free algorithms are in turn far from the state 
of the art in domains that require precise and 
sophisticated lookahead, such as chess and Go” 
	 -Schrittwieser et al. (2019)

“By employing search, we can find strong move 
sequences potentially far away from the 
apprentice policy, accelerating learning in complex 
scenarios”

	 -Anthony et al. (2017)

“...[models] enable better generalization across 
states, remain valid across tasks in the same 
environment, and exploit additional unsupervised 
learning signals...” 
	 -Weber et al. (2017)

“....predictive models can enable a real robot to 
manipulate previously unseen objects and solve 
new tasks”

	 -Ebert et al. (2018)
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MuZero
Schrittwieser et al. (2019)
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MuZero

act

update

observe

plan

Schrittwieser et al. (2019)
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MuZero

act

update

observe

plan
Guide MCTS using 
learned policy and 

value functions

(MCTS = Monte Carlo Tree Search)

policy: where to search? 
model: what will happen? 

value: is what will happen good?

Schrittwieser et al. (2019)

mailto:jhamrick@deepmind.com


Jessica Hamrick - jhamrick@deepmind.com

MuZero
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Act based on the 
results of search

(MCTS = Monte Carlo Tree Search)
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MuZero

act

update

observe

plan

Act based on the 
results of search

Update policy 
and value 

function based 
on the results of 

search

(MCTS = Monte Carlo Tree Search)

Guide MCTS using 
learned policy and 

value functions

policy: where to search? 
model: what will happen? 

value: is what will happen good?

Schrittwieser et al. (2019)
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Environments

Acrobot 
(Swingup Sparse)

Cheetah 
(Run)

Humanoid

(Stand)

Minipacman 
(Procedural)

Hero Ms. Pacman Sokoban 9x9 Go
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR. 
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plan

(only during learning)
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Varying the amount of search at test time

Hamrick et al. (2021)
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Stress-testing the value function

Hamrick et al. (2021)
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Stress-testing the value function

Errors in the model of the world (i.e. transition function) are not 
the only types of error to be concerned about.

Hamrick et al. (2021)
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Generalizing to new mazes

(Perfect generalization)

Hamrick et al. (2021)
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Generalizing to new mazes

(Perfect generalization)

Planning—even with a 
perfect model—does 
not guarantee good 

generalization 
performance.

Hamrick et al. (2021)
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Takeaway #1: Planning seems to be most useful 
during learning and less so at test time (in most 

environments).
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Takeaway #2: Effective planning requires having 
good representations for multiple components 

(policy/value/model).
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Conundrum: If we have good enough value functions 
and policies, do we even need planning at all? 🤯
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