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Reasoning with a world model

“If the organism carries a ‘small-scale model’ of external reality and of its
own possible actions within its head, it is able to try out various alternatives,
conclude which is the best of them, react to future situations before they arise,
utilise the knowledge of past events in dealing with the present and future, and
In every way to react in a much fuller, safer, and more competent manner to the
emergencies which face it.”

—Kenneth Craik, The Nature of Explanation (1943)
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The promise of model-based RL

“Model-free algorithms are in turn far from the state
of the art in domains that require
, such as chess and Go”
-Schrittwieser et al. (2019)

“By employing search, we can find strong move
seqguences potentially far away from the
apprentice policy, accelerating learning in complex
scenarios”

-Anthony et al. (2017)

“....predictive models can enable a real robot to
manipulate objects and solve
new tasks”

-Ebert et al. (2018)
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“Model-based planning is an essential ingredient
of human intelligence, enabling
to new tasks and goals”
-Lake et al. (2016)

“...a flexible and general strategy such as mental
simulation allows us to reason about a wide range
of scenarios, even ones...”

-Hamrick (2017)

“...[models] enable better across
states, remain valid across tasks in the same
environment, and exploit additional unsupervised
learning signals...”

-Weber et al. (2017)
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The best MBRL systems are complicated
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Pure planning

Model Loss

Planner Actions Experience
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Pure planning

Architecture?

Model Loss

Experience Self-supervision?

Planner Actions

Planning method? Exploration policy?
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Guided planning

Model Loss

Planner Actions Experience

Policy Loss
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Guided planning

Model Loss

Planner Actions Experience

Policy Loss

Architecture? RL loss?
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Planner

Architecture?
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Guided planning

Experience

Hamrick et al. (2020).
Combining Q-learning
and search with
amortized value
estimates. ICLR.

Model Loss

Policy Loss

RL loss?



mailto:jhamrick@deepmind.com

Hamrick et al. (2020).

Expert Ite ratIOﬂ Combining Q-learning

and search with
amortized value
estimates. ICLR.

Model Loss

Planner Experience

Policy Loss

Architecture? RL loss?
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Dyna

Experience Model Loss

Planner Actions

Imagination Policy Loss
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Dyna

Experience Model Loss

Rate of model
Planner Actions updates to policy
updates?

Different Imagination Policy Loss
exploration?
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Outline

e Understanding MBRL
Hamrick et al. (2021). On the role of planning in model based reinforcement learning. ICLR.

¢ Understanding and improving generalization

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world
models. ICLR.

e Understanding and improving transfer
Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration
and transfer. Under review.

® The future of MBRL
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MuZero

Schrittwieser et al. (2019)
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MuZero

Schrittwieser et al. (2019)

observe
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MuZero

Schrittwieser et al. (2019)

Guide MCTS using
learned policy and
value functions

policy: where to search?
model: what will happen”?
value: is what will happen good?

(MCTS = Monte Carlo Tree Search) observe

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

MuZero

Schrittwieser et al. (2019)

Act based on the

Guide MCTS using results of search
learned policy and
value functions

policy: where to search?
model: what will happen”?
value: is what will happen good?

(MCTS = Monte Carlo Tree Search) observe
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MuZero

Schrittwieser et al. (2019)

act

Act based on the

Guide MCTS using results of search

learned policy and
value functions
policy: where to search? update
model: what will happen”?

value: is what will happen good? Update policy

and value
function based
on the results of
search

(MCTS = Monte Carlo Tree Search) observe
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ENvironments

Acrobot Cheetah Humanoid Minipacman
(Swingup Sparse) (Run) (Stand) (Procedural)

Hero Ms. Pacman Sokoban Ox9 Go
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How does planning
benefit model-based RL
agents?
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How does planning
benefit model-based RL
agents?




Using search Iin different ways

Train Update Train Act Test Act
One-Step 1-step search prior prior
Learn Full search prior prior
Data 1-step search Full search prior
Learn+Data Full search Full search prior
Learn+Data+Eval Full search Full search Full search

(vanilla MuZero)
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.

-
-

act

O
o

Normalized Reward
(@)
(@))

0.0
1S L D L+D L+D+E
® Acrobot = Hero Sokoban Observe
Cheetah o— Ms. PM e— 9%x9 Go

Humanoid —e— Mini PM

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

How does planning Primarily by constructing
benefit model-based RL targets for learning & acting to
agents? obtain a useful data distribution.




Q2: Within planning, what
algorithmic choices drive
performance?




Effect of tree depth

Dyct = «; B =10 (Minipacman), 25 (Sokoban), 150 (Go), or 50 (otherwise)
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Effect of UCT depth
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=ffect of search budget
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Within planning, what Number of simulations during
algorithmic choices drive training. Planning depth and
performance”? complexity matter less.




To what extent does
planning improve
zero-shot generalization®?




Model generalization to new search budgets
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Model generalization to new search budgets

MCTS w/ Model
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Value generalization to new planners (BFS)
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Value generalization to new planners (BFS)
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Errors in the model of the world (i.e. transition function) are not
the only types of error to be concerned about.
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Generalizing to new mazes

Train Test

[ USRS Py ——— (Perfect generalization)
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Generalizing to new mazes
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Generalizing to new mazes
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Generalizing to new mazes

Train

Planning—even with a

perfect model—does
Model Simulator not guarantee good
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To what extent does Not as much as you might
planning improve think, even with a perfect

zero-shot generalization®? model!




Interim Takeaway #1: Planning seems to be most
Jseful during learming and less so at test time (in most
environments).
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Interim Takeaway #1: Planning seems to be most
Jseful during learming and less so at test time (in most
environments).
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Interim Takeaway #1: Planning seems to be most
Jseful during learming and less so at test time (in most
environments).

Contribution of planning "in the moment"

O
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Interim Takeaway #1: Planning seems to e most
Jseful during leaming and less so at test time (iIn most
environments).

Interim takeaway #2: Effective planning requires
having good representations for multiple components
(policy/value/model).
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Outline

e Understanding MBRL
Hamrick et al. (2021). On the role of planning in model based reinforcement learning. ICLR.

¢ Understanding and improving generalization

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world
models. ICLR.

¢ Understanding and improving transfer
Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration
and transfer. Under review.

® The future of MBRL
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Procedural generalization

Train on a procedurally-generated distribution of environments
Zero-shot generalization to unseen environments
(e.g. Procgen, Cobbe et al., 2020)
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Procedural generalization

Train on a procedurally-generated distribution of environments
Zero-shot generalization to unseen environments
(e.g. Procgen, Cobbe et al., 2020)
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Fallure of representation
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improving MuZero with self-supervision

Tt . —
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—> Encoder —> Heads — V;------- - MZ Loss
(OE) PH
' Tt4+1
Dynamics —~ IR
M((chlj)el —> Heads —> Vt——l ------ > MZ Loss
(DH) T~ Y
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( ) (DH) ~a e a4
Tt+k

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

improving MuZero with self-supervision

.! - | )
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improving MuZero with self-supervision
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improving MuZero with self-supervision
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improving MuZero with self-supervision
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improving MuZero with self-supervision
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improving MuZero with self-supervision
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improving MuZero with self-supervision
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Procgen results (500 levels)
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— Self-supervision has a huge impact on generalization!
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Comparing methods of self-supervision
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Comparing methods of self-supervision

O 0.6
o
%
O — V] Z
N 0.4-
-(_E QL+Model+Recon — A” methOdS Of
é MZ+SPR L.
S  MzacContr self-supervision are
c 02 ——MZ+Recon roughly comparable
S

0.0 -

0 10M 20M 30M

Environment frames

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

Improved representations
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Self-supervision Improves generalization
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Self-supervision Improves generalization
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— Self-supervision improves generalization even when
controlling for training performance
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INteraction between self-supervision and dataset size
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INteraction between self-supervision and dataset size

s M Z +CONLr s MZ+Recon === MZ+SPR == M/

1- 10 training levels 100 training levels 500 training levels All training levels
Y
@)
)
W 0.75-
O
N
= 0.50-
©
-
| -
O 0.25-
=
-
o O-
=

0 10M 20M 30M 0 10M 20M 30M 0 10M 20M 30M 0 10M 20M 30M
Environment frames

very little improvement big improvement
w/ self-supervision w/ self-supervision

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

INteraction between self-supervision and dataset size
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— Self-supervision is
more useful when training
on more environments
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Interim Takeaway #3: Generalization requires gooo
representations, which can be improved through any

method of sef

—-supervision.

Interim Takeaway #4: Self-supervision interacts
positively with the number of environments. Ve
should be wary of drawing conclusions from single-
task settings!
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Outline

e Understanding MBRL
Hamrick et al. (2021). On the role of planning in model based reinforcement learning. ICLR.

¢ Understanding and improving generalization

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world
models. ICLR.

e Understanding and improving transfer
Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration
and transfer. Under review.

® The future of MBRL
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Questions regarding transfer
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Questions regarding transfer

o Unsupervised 1. Is there an advantage to an agent being
" exploration model-based during unsupervised
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Questions regarding transfer
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Questions regarding transfer

o Unsupervised 1. Is there an advantage to an agent being
" exploration model-based during unsupervised
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2. What are the contributions of each
component of a model-based agent for
. . | downstream task learning?
. . Ine-tuning on |
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Y=, —» 3. How well does the model-based agent
. v — o .
" - ( deal with distribution shift between the

unsupervised and fine-tuning phases?
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EXperimental setup
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EXperimental setup

Unsupervised exploration
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EXperimental setup

Unsupervised exploration
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ENvironments

RoboDesk (Kannan et al., 2021)
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ENvironments

RoboDesk (Kannan et al., 2021)
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Exploration in Crafter

EEm MB-Explore
s MF-Explore

o o o
~ (@)} (0]

Final success rate (150M)
o
N

O
o

Jessica Hamrick - jhamrick@deepmind.com



mailto:jhamrick@deepmind.com

Exploration in Crafter
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— MB leads to improved exploration performance
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Transfer in Crafter
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Transfer in Crafter

16.0 -
14.0 - Method Score Reward
12.0 - Human Experts Hatner, 2021) 50.0 6.8 14.3 £2.3
10.0 ~ — MB—>MB MB—MB 164 +15 12.7 04
-
é -  MBoMF MB—MF 8.8 1+0.4 5.0x=0.2
< MESME MF—MB 0.2 10.5 9.3 +0.3
6.0 -  MFSMF MF—MF 0.7 = 0.6 6.9 + 0.2
4.0 - DreamerV3 Hafner et al., 2023) 145+1.6 11.7+1.9
. LSTM-SPCNN stani¢etal, 2022y 12.1 = 0.8 -
DreamerV?2 Mafner, 2021) 100,0+1.2 9.0+1.7
0.0- MB Scratch 4.4+4+0.4 8.5+0.1

0 500k 1M
Environment frames

— MB leads to improved transfer performance,
and matters a lot for finetuning
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Transfer in Robodesk
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Contribution of different components
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Contribution of different components
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Contribution of different components
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Transfer in Meta\World

Train Test

basketball button press dial turn drawer close p%g insert ﬁ ‘ ‘
side
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pick place push reach sweep into window open

‘
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Transfer in Meta\World

Traln Test
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substantially improve
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Interim Takeaway #5: Model-based pre-training anc
fine-tuning can substantially iImprove transter
performance, but only it there is minimal distribution shift.

Interim Takeaway #6: Effective transfer requires
learning a good policy and a good model!
(Sounds familiar...)
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Outline

e Understanding MBRL
Hamrick et al. (2021). On the role of planning in model based reinforcement learning. ICLR.

¢ Understanding and improving generalization

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world
models. ICLR.

e Understanding and improving transfer
Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration
and transfer. Under review.

® The future of MBRL
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Overall Learnings
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Overall Learnings

1. Planning seems to be most useful during learning and less so at test
time (In most environments).
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Overall Learnings

1. Planning seems to be most useful during learning and less so at test
time (In most environments).

2. Effective planning, generalization, and transter all depend on multiple
components (e.g., policies, value functions, models).

 |mproved representations through self-supervision.

e However, performance still relies on there being minimal distribution shift.
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Overall Learnings

1. Planning seems to be most useful during learning and less so at test
time (In most environments).

2. Effective planning, generalization, and transter all depend on multiple
components (e.g., policies, value functions, models).

 |mproved representations through self-supervision.

e However, performance still relies on there being minimal distribution shift.

3. Self-supervision interacts positively with the number of environments. \We
should be wary of drawing conclusions from single-task settings!
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Hamrick et al. (2021). On the role of planning in model based reinforcement learning. ICLR.

¢ Understanding and improving generalization

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world
models. ICLR.

e Understanding and improving transfer
Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration
and transfer. Under review.
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Still missing: deliberative reasoning

“Model-free algorithms are in turn far from the state
of the art in domains that require
, such as chess and Go”
-Schrittwieser et al. (2019)
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Still missing: strong generalization

“Model-based planning is an essential ingredient
of human intelligence, enabling
to new tasks and goals”
-Lake et al. (2016)
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Still missing: strong generalization

“Model-based planning is an essential ingredient
of human intelligence, enabling flexible
adaptation to new tasks and goals”

-Lake et al. (2016)
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