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ScienceDirect
Mental simulation — the capacity to imagine what will or what

could be — is a salient feature of human cognition, playing a key

role in a wide range of cognitive abilities. In artificial intelligence,

the last few years have seen the development of methods which

are analogous to mental models and mental simulation. This

paper outlines recent methods in deep learning for constructing

such models from data and learning to use them via

reinforcement learning, and compares such approaches to

human mental simulation. Model-based methods in deep

learning can serve as powerful tools for building and scaling

cognitive models. However, a number of challenges remain in

matching the capacity of human mental simulation for efficiency,

compositionality, generalization, and creativity.
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Introduction
Mental simulation is the ability to construct mental

models [1,2] to imagine what will happen or what could
be. Mental simulation is a cornerstone of human cognition

[3] and is involved in physical reasoning [4,5], spatial

reasoning [6], motor control [7], memory [8], scene con-

struction [9], language [10], counterfactual reasoning

[11,12], and more. Indeed, some of the most uniquely

human behaviors involve mental simulation, such as

designing a skyscraper, performing a scientific thought

experiment [13], or writing a novel about people and

worlds that do not — and could not — exist. However,

such phenomena are challenging to model quantitatively,

both because the mental representations used are unclear

and because the space of possible behavior is combinato-

rially explosive.

Artificial intelligence (AI) aims to build agents which are

similarly capable of behaving creatively and robustly in
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novel situations. Perhaps unsurprisingly, there is an ana-

logue to mental simulation in AI: a collection of algo-

rithms referred to as model-based methods, with the

‘model’ referring to a predictive model of what will

happen next. While model-based methods have been

around for decades [14,15�], recent advances in deep

learning (DL) and reinforcement learning (RL) have

brought renewed interest in learning and using models.

Among the results are systems supporting superhuman

performance in games like Go [16,17]. Importantly, these

systems must necessarily deal with the computational and

representational challenges that have historically faced

cognitive modelers.

This paper reviews recent model-based methods in DL

and emphasizes where such approaches align with human

cognition. The aim is twofold. First, for behavioral scien-

tists, this article provides insight into methods which

enable intelligent behaviors in large state and action

spaces, with the intent of inspiring future models of

mental simulation. Second, for DL and AI researchers,

this article compares model-based methods to human

capabilities, complementing a number of recent related

works [18–21] and clarifying the challenges that lie ahead

for building human-level model-based intelligence.

Reinforcement learning
At the core of most model-based methods in DL is the

partially-observable Markov decision process, or POMDP

[22], which governs the relationship between states (x),
observations (o), actions (a), and rewards (r), as illustrated in

Figure 1a. Specifically, these variables are related accord-

ing to transition (T), observation (O), recognition (O�1), and

reward (R) functions (Figure 1b–e) as well as a policy (p)
which produces actions (Figure 1f).

The field of RL is concerned with the problem of finding

a policy that achieves maximal reward in a given

POMDP. ‘Deep’ RL implies that the functions in

Figure 1 are approximated via neural networks. Much

of the research in deep RL is model-free in that it aims to

learn policies without knowing anything about the tran-

sition, observation, recognition, or reward functions (see

[23] for a review). In contrast, model-based deep RL

(MBDRL) aims to learn explicit models of these func-

tions which are used to aid in computing a policy, a

process referred to as planning [15�].

An important component of the POMDP is that of partial

observability, in which observations do not contain full
www.sciencedirect.com
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Figure 1

The partially-observable Markov decision process (POMDP). (a) A graphical model of the POMDP, where t indicates time. A state s is a full

description of the world, such as the geometries and masses of objects in a scene. An observation o is the data that is directly perceived by the

agent, such as a visual image. An action a is an intervention on the state of the world chosen by the agent, such as ‘move left’. A reward r is a

scalar value that tells the agent how well it is doing on a task and can be likened to the idea of utility or risk. Arrows indicate dependencies

between variables. Pink circles indicate variables that can be intervened on; blue indicates variables that are observed; and white indicates

variables that are unobserved. (b–f) Depictions of the individual functions (in green) that relate variables in the POMDP. The transition function (b)

takes the current state and action and produces the next state, st+1 = T(st, a). The reward function (c) takes a state and action and produces a

reward (or utility) signal, rt = R(st, at). The observation function (d) is the process by which sensory data are generated given the current state,

ot = O(st). For example, this can sometimes be thought of as a ‘rendering’ function which produces images given the underlying scene

specification. The recognition function (e) is the inverse of the observation function, st = O�1(ot), and is analogous to the process of perception.

The recognition function is often conditioned on past states and observations (i.e. a ‘memory’), to allow aggregation of information across time (for

example, velocity, or multiple viewpoints of the same scene). The policy (f) is the function which gives rise to actions given the underlying state of

the world, at = p(st). The policy is also often conditioned on past memories.
state information. Sometimes, the missing information is

minimal (e.g. velocity can be inferred from a few sequen-

tial frames); other times, it is severe (e.g. first-person

observations are individually not very informative about

the layout of a maze). The recognition function thus

serves a dual purpose: to infer missing information (e.g.

[24,25]), and to transform high-dimensional perceptual

observations to a more useful representational format.

The POMDP model provides a useful framing for a

variety of mental simulation phenomena, and illustrates

how behaviors that seem quite different on the surface

share a number of computational similaries (Figure 2).

For example, a mental model [1,2] can be seen as a

particular latent state representation paired with a corre-

sponding transition function, allowing it to be manipu-

lated or run by via mental actions. The way that people

choose which mental simulations to run (e.g. the direction

of a mental rotation [6]) implies a particular policy and

planning method.

Yet, simply framing mental simulation as a POMDP does

not tell us where the component functions (Figure 1b–e)

come from, what representations they ought to operate

over, or how to perform inference in the resulting

POMDP. While a number of existing works have

answered these questions in simplified observation, state,

and action spaces (e.g. [5,26,27]), the answers remain
www.sciencedirect.com 
elusive in higher-dimensional settings. Such settings

are exactly where DL excels, suggesting that it may prove

useful in building cognitive models of mental simulation

in richer, more ecologically-valid environments. Indeed,

this approach has already been successful in understand-

ing other aspects of the mind and brain, including sensory

cortex [28], learning in the prefrontal cortex [29], the

psychological representations of natural images [30], and

the production of human drawings [31].

Methods in DL for learning models
State-transition models

Sometimes, it is assumed that the agent has direct access

to a useful representation of the state, obviating the need

for a recognition model (Figure 3c). Many approaches to

learning such state-transition models use classical recur-

rent neural networks (e.g. [32,33]). Recently, models

which represent the state as a graph [34�] have been used

to predict the motion of rigid bodies [35,36], deformable

objects [37], articulated robotic systems [38], and multi-

agent systems [39].

Observation-transition models

Often, an agent does not have direct access to a useful

state representation. One approach to dealing with this

issue (often referred to as ‘video prediction’) learns a

transition model directly over sensory observations

(Figure 3d). For instance, [40] learn a model of pixel
Current Opinion in Behavioral Sciences 2019, 29:8–16
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Figure 2

Various forms of imagination and mental simulation can be viewed as engaging different aspects of the POMDP model, illustrating how seemingly

disparate phenomena are computationally quite similar. In all cases, blue circles indicate relevant observed variables, white circles indicate latent

variables, pink circles indicate actions that modify states, and grayed-out circles indicate variables which are not relevant for a particular form of

mental simulation. (a) Physical prediction tasks like those explored by [5] can be seen as a case where an initial observation is given (e.g. a tower

of blocks) and future states are predicted given that observation (e.g. whether the blocks move). (b) The mental rotation task from [6], in which it

was demonstrated that people imagine objects at different rotations in order to compare them, can be seen as choosing a sequence of actions to

produce mental images. (c) Theory of mind tasks such as those examined by [26] involve inferring a latent state such as the preferences of

another agent (e.g. that the agent prefers pizza over hamburgers) given a sequence of observations (e.g. that the agent picks up a pizza). (d)

Tasks like the two-step task [27] which probe how humans learn from reinforcement naturally fall under the POMDP paradigm. In such tasks,

people must learn to choose actions to navigate through a sequence of symbols in order to maximize a nonstationary reward.
motion; [41] predict image masks indicating how a tower

of blocks will fall; and [42] predict the boundaries of

objects in images.

Prior-constrained latent state-transition models

Rather than computing transitions directly over observa-

tions, an alternate approach first transforms observations

into latent state representations via the recognition func-

tion. Sometimes, prior knowledge can be leveraged,

resulting in prior-constrained latent states (Figure 3e).

For example, [43] use pre-existing knowledge about

physics to encourage recognition models to recover prop-

erties like mass and friction. Other approaches use super-

vision to train recognition and transition models to predict
Current Opinion in Behavioral Sciences 2019, 29:8–16 
2D [44,45] and 3D [46,47�] motion. [48��] use supervision

to learn symbolic representations like on(A,B).

Data-constrained latent state-transition models

Another approach infers data-constrained latent states,
where the representations are influenced more strongly

by data than by prior knowledge (Figure 3f). The most

common such approach is to find a representation which

can be used to predict future observations (e.g. [49–51]).

While most approaches assume distributed vector repre-

sentations, others have explored alternatives such as

graphs [52] or low-dimensional binary vectors [53].

Other models have explored different pressures for learn-

ing latent state representations beyond reconstructing
www.sciencedirect.com
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Figure 3

Methods for learning models in DL. Most methods focus on learning transition and recognition functions; reward functions are often either

assumed to be known or are learned as part of the transition function. Blue outlines indicate variables which are observed. (a–b) In a hypothetical

scenario, an agent controls a robot arm to pick up a block, and receives pixel-based observations. (c) In state-transition models, the underlying

states (e.g. the orientation of the blocks and the robot arm) are directly observed. (d) In observation-transition models, transitions are learned

directly between sensory observations. (e) In prior-constrained latent state-transition models, the states must be inferred from observations but

often true states are available at training time for supervision, or strong assumptions are made about the dynamics of T or the representation of s.

(f) In data-constrained latent state-transition models, a latent state is used but no supervision is given over states at training time. The learned

latent states are usually distributed and often do not directly correspond to interpretable dimensions such as position, orientation, etc.

1 There are close ties between this approach and actor-critic methods,

in which a model of future expected reward is learned (the ‘critic’) and

used to optimize the actor via backpropagation. Although actor-critic

methods are considered to be model-free because they do not involve a

transition model, they are in some sense weakly model-based in that

they involve a separate model of the reward which is used to train the

policy.
observations. For example, one approach is to use policy

loss or reward prediction error to shape the latent repre-

sentations (e.g. [25,54–56]). Because reward is a scalar

signal, such representations may not be useful for pre-

dicting future observations, but may still be useful for

planning. Other objectives include inferring the action

taken between observations [57] or maximizing the

mutual information between observation-transitions

and state-transitions [58�].

Methods in DL for using learned models
A model on its own does not enable flexible behavior: a

planning method is needed to turn predictions into

actions. Background planning uses models only during

the process of learning a model-free policy, while deci-
sion-time planning uses models during online deliberation

[15�].
www.sciencedirect.com 
Background planning

The most popular approach to background planning,

Dyna (Figure 4a) [59], uses a model to produce simulated

experience in place of real experience [32,53,60]. Other

methods backpropagate gradients through learned tran-

sition and reward models [61], thus providing more infor-

mation about an action’s utility than a scalar reward does

on its own.1 Another approach uses decision-time plan-

ning to improve decisions, and then trains a policy to

mimic those decisions [17].
Current Opinion in Behavioral Sciences 2019, 29:8–16
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Figure 4

Methods for using models in DL. Pink indicates actions; blue indicates observed states; white indicates unobserved (simulated) states; and green

indicates functions. (a) Dyna [59] is a background planning method which uses simulated experience in place of real experience. (b) Monte-Carlo

rollouts, where a base policy is used to sample several sequences of actions and their outcomes (a trajectory), after which one is selected

according to a criterion such as highest reward. (c) Trajectory optimization, where a random sequence of actions is chosen and then optimized to

maximize reward. (d) Tree expansion or search, in which actions are chosen according to some base policy to search over a tree of possibilities.

(e) Dynamic programming, in which rewards are computed for the whole state space and then used to recursively compute the maximum future

reward for all other states. The shade indicates value, with darker shades indicating high value and lighter shades indicating low value. Readers

are referred to [15�] for further details on these methods.
Decision-time planning

One method for decision-time planning simulates Monte-
Carlo rollouts (Figure 4b) and then chooses the rollout (or

trajectory) with highest reward [33]. Alternately, trajecto-

ries can be aggregated via a learned mechanism [62]. The

choice of base policy for simulating trajectories has varied

from random sampling [33]; to approximating the full

model-based policy [62]; to learning the base policy end-

to-end with the full policy [51].

Another method is trajectory optimization (Figure 4c),

which iteratively improves a trajectory. Most works use

gradient-based methods [40,54,63], while some have

explored using a learned optimization procedure [64,65].

Tree search (Figure 4d) has achieved superhuman per-

formance in Go given a known transition model and

learned model-free policy prior [16,17]. Learned models

can be used by embedding the tree search into the

computation graph itself [56,66�]. Other work learns

the decisions that are usually hardcoded into tree search

[67��].

Finally, dynamic programming (Figure 4e) performs com-

putations recursively over the entire state space. While
Current Opinion in Behavioral Sciences 2019, 29:8–16 
techniques like value iteration [14] have classically been

used in background planning, recent work incorporates

them into DL architectures as decision-time mechanisms

[24,68].

Modeling mental simulation with model-based
deep RL
The varied approaches to learning and using models in

DL have resulted in powerful systems that can model

complex physical phenomena [35–38,47�,58�], play diffi-

cult puzzle games [62,66�,67��], and control articulated

physical systems [33,40,54,63]. But beyond such applica-

tions in AI, model-based methods share a number of

similarities with human mental simulation (Figure 2),

making them an ideal starting point for developing

new cognitive models and for scaling existing ones.

Mental imagery

Consider the classic debate regarding which representa-

tions underly mental imagery [69–71]. According to the

depictive theory (DT) [70], the representations are 2D

spatial arrays resembling images. In contrast, the propo-

sitional theory (PT) [69] states that the representations

are symbolic in nature, without any intrinsic spatial prop-

erties. We can see echoes of these theories in the different
www.sciencedirect.com
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structures of transition models. Observation-transition

models (Figure 3d) are related to DT in that they operate

directly over sensory observations, with intermediate

computations operating over 2D convolutional features

(e.g. [40]). Prior-constrained latent state-transition mod-

els (Figure 3e) may make the assumption that the under-

lying representation is symbolic (e.g. [48��]), just as PT

does. However, neither DT nor PT have strongly consid-

ered the role of reward functions or policies [71], in

contrast to enactive theories (ET) (e.g. [72]) which con-

sider mental imagery to be strongly coupled to actions.

Framing DT, PT, and ET as particular instantiations of

the POMDP framework, and modeling them with the

tools of MBDRL, provides an avenue for furthering these

discussions surrounding mental imagery.

MBDRL may also inform our understanding of mental

imagery across the visual [70], auditory [73], and motor

modalities [74]. Do these multimodal forms of imagery

differ because they deal with different sensory data, or

because the underlying mechanisms are themselves also

different? MBDRL offers a way to probe this question by

training networks with identical or varied architectures on

data from different sensory modalities, and comparing the

results to human mental imagery phenomena.

Learning by thinking

A longstanding puzzle in cognitive science is that of

‘learning by thinking’ [75]: how does thought influence

behavior without the addition of any new information?

One hypothesis proposes that a model-based process

trains a model-free action policy [76,77], and has been

successfully modeled via Dyna [59] (Figure 4a). How-

ever, such work often targets MDPs with small state

spaces, which are easier to control experimentally and

to compute model predictions for. MBDRL offers the

possibility of scaling such theories to behavioral domains

with huge state spaces. For example, when combined

with DL, such models might also be able to account for

the phenomenon of mental practice [78], in which people

imagine performing a complex physical action (e.g.

throwing a ball) and later exhibit improved performance

when actually taking that action.

The control of mental simulation

Finally, an open question is how simulations are con-

trolled during deliberation. An active area of research has

investigated the overall choice of whether (and how

much) to plan [79,80], treating this choice as a speed-

accuracy trade-off and inspiring similarly adaptive

approaches in MBDRL [64]. The role of the hippocam-

pus in planning is also an active topic [81,82], with some

work suggesting how hippocampal replay might be con-

trolled by a variant of Dyna [77]. Other research has

investigated how tree search might support decisions

when playing board games [83]. Yet, other domains have

received less attention. For example, while people use
www.sciencedirect.com 
mental simulation to make predictions about physical

scenes like towers of blocks [5], it is unclear how those

simulations are engaged when constructing towers. Simi-

larly, while mental simulation is used during creative

thought (e.g. [84]), it is not well understood which simu-

lations are explored, and why. By casting these problems

as POMDPs and solving them with the powerful planning

methods from MBDRL, we can produce quantitative,

testable hypotheses about how mental simulations might

be controlled.

Challenges for model-based deep RL
Model-based deep RL holds the promise of learning rich

models of the world from experience and using them to

make flexible and robust decisions. However, in compar-

ison to the human capacity for building and running

mental models, there are several challenges in fulfilling

this promise.

One view of mental simulation holds that it is fast and

precise. For example, simulations from forward models in

the motor systems must occur in less than 100ms to

support real-time action [7]. Similarly, activation of place

cells during hippocampal preplay in rats — corresponding

to the planning of future trajectories — occurs on the

order of 100–300 ms [81]. This view is most consistent

with current methods in MBDRL, which require a large

number of faster-than-realtime model evaluations before

making a decision (e.g. [16,17,33,54]).

Other mental simulations are slow, noisy, and incomplete,

with mental simulations lacking full detail [70], exhibit-

ing systematically wrong dynamics [85], and requiring

multiple seconds to run [6]. Latent state-transition mod-

els have the potential to learn incomplete models of the

world, particularly if they do not rely on reconstructing

observations. However, almost all planning algorithms

assume mostly accurate models. Even in cases where

model error is explicitly addressed [32,62–64], it is unclear

how well such methods work when the model error is

severe. It would seem that the mind can get a lot out of

only a handful of incomplete and possibly very inaccurate

simulations, a feat which MBDRL methods have yet to

achieve.

Mental simulation is also seen as general, flexible, and

compositional, supporting behavior across a wide range of

different tasks [4], capturing a large body of common-

sense knowledge [5,12], and operating over multiple

levels of abstraction [86]. While recent graph network

approaches do afford more compositional models than

standard RNN approaches [34�], a separate model is still

learned for each task or (at best) for a small set of related

tasks (e.g. [38,47�,54]). A significant challenge for DL is to

build models that seamlessly compose at different levels

of abstraction and that are informed by rich background
Current Opinion in Behavioral Sciences 2019, 29:8–16
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knowledge about the world, enabling rapid transfer to a

diverse range of situations and tasks.

Finally, mental simulation is exploratory, counterfactual,

and creative, giving rise to thought experiments [13],

children’s pretend play [11], and creative works [84].

Mental simulations allow us to conceive of counterfactual

worlds that did not come to pass, but which could have

[11,12], as well as fully impossible worlds. While the

notion of an action-conditional transition model

(Figure 1b) does encode some counterfactual knowledge,

current methods in DL often struggle to generalize far

beyond the scenarios they were trained on [20]. It is an

open question of how such methods could entertain

concepts as far removed from reality as humans do (such

as, ‘what if the Earth were replaced by blueberries?’ [87]).

While MBDRL holds much promise for building flexible,

robust intelligence, it still has a ways to go. To match

human cognition, models must be compositional and

assembled on-the-fly; methods for planning must succeed

with only a handful of evaluations from noisy, incomplete

models; and models must be able to generalize far from

their training sets, supporting creative exploration and a

richer understanding of the world.

Conclusion
The notion of using models of the world to make better

decisions has deep roots in the history of both cognitive

science [3] and RL [14]. It is unsurprising, then, that both

mental simulation and MBDRL share a number of simi-

larities. For cognitive scientists, these similarities suggest

that current approaches in MBDRL may be useful start-

ing points for developing new cognitive models and

scaling existing models to larger and more complex

domains. For DL researchers, they suggest that mental

simulation can play an important role in guiding research

towards more intelligent agents. In both cases, the inte-

gration of model-based methods from DL with theories of

mental simulation promises new and exciting research

supporting more flexible and creative artificial agents, as

well as a deeper understanding of the complexities of the

human imagination.
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